Silicon-Based Anode Batteries Achieve 3,606 mAh with 93% Capacity Retention after 300 Cycles

In This Article:

HPQ Silicon Inc.
HPQ Silicon Inc.
  • 18650 batteries with GEN3 silicon-based materials continue to deliver 3,606 mAh of capacity after 300 cycles [1]

  • 20% higher than the advertised 3,000 mAh capacity of a new MuRata's high-performance US18650VTC6 battery [2]

  • On Track to Set a New Performance Standard

MONTREAL, Oct. 08, 2024 (GLOBE NEWSWIRE) -- HPQ Silicon Inc. (“HPQ” or the “Company”) (TSX-V: HPQ, OTCQB: HPQFF, FRA: O08), a technology company specializing in green engineering of silica and silicon-based materials, is pleased to update shareholders on the latest battery milestones achieved by its France-based affiliate, NOVACIUM SAS ("Novacium").

Rigorous ongoing testing protocols [3] (0.5C cycling at 25°C) reveal that Lithium-ion 18650 batteries using a blend of graphite and Novacium’s GEN3 silicon-based anode material achieve a 32% capacity improvement and have only 5% of degradation compared to graphite benchmarks at the 300-cycle mark.

"These results continue to demonstrate the potential of our technology to significantly enhance energy density and extend the lifespan of lithium-ion batteries," said Dr. Jed Kraiem, COO of Novacium. "Assuming the observed degradation trends continue beyond 300 cycles, our projection models indicate that by around the 1,000-cycle mark, the GEN3 material’s performance should equal the projected graphite benchmark performance at that stage [4]."

Boosting Battery Performance and Coulombic Efficiency with Silicon-Based Anodes at 300 cycles

Image 1 (Graph 1 A & 1B) at 300 cycles_Whithout_legend
Image 1 (Graph 1 A & 1B) at 300 cycles_Whithout_legend


Graph 1A highlights the superior capacity (in mAh) of 18650 batteries made with Novacium's GEN3 material (yellow line) compared to the 100% graphite benchmark (blue line) over 300 cycles. Batteries utilizing GEN2 (green line) and GEN1 (orange line) materials, on the other hand, fail to maintain performance beyond the 200-cycle mark. At 300 cycles, the data shows that GEN3 batteries sustain an average capacity of 3,606 mAh, significantly outperforming the graphite benchmark’s 2,740 mAh.

Graph 1B provides a closer look at the performance degradation (or Coulombic efficiency [5]) of the GEN3 silicon material over 300 cycles, showing a capacity retention of 93% compared to the graphite benchmark's 98%—a modest 5% difference. Specifically, the absolute capacity of GEN3 batteries (yellow line) decreased from 3,883 mAh to 3,606 mAh, while the graphite benchmark (blue line) exhibited a slight reduction from 2,780 mAh to 2,740 mAh.

The data in Graph 1B reveals that between the 200 and 300-cycle mark, batteries using the graphite benchmark experienced only a 0.6% capacity degradation (from 98.6% to 98.0%), while those made with Novacium's GEN3 material showed a 3.2% drop (from 96.2% to 93.0%). These findings underscore two key points: first, the coulombic efficiency of the graphite benchmark batteries matches the performance of the best 18650 batteries on the market; second, the efficiency trend of GEN3 batteries remains highly promising.